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Abstract This paper presents Raven, a new intermediate verification language
and deductive verification tool that provides inbuilt support for concurrency rea-
soning. Raven’s meta-theory is based on the higher-order concurrent separation
logic Iris, incorporating core features such as user-definable ghost state and thread-
modular reasoning via shared-state invariants. To achieve better accessibility and
enable proof automation via SMT solvers, Raven restricts Iris to its first-order
fragment. The entailed loss of expressivity is mitigated by a higher-order mod-
ule system that enables proof modularization and reuse. We provide an overview
of the Raven language and describe key aspects of the supported proof automa-
tion. We evaluate Raven on a benchmark suite of verification tasks comprising
linearizability and memory safety proofs for common concurrent data structures
and clients as well as one larger case study. Our evaluation shows that Raven
improves over existing proof automation tools for Iris in terms of verification
times and usability. Moreover, the tool significantly reduces the proof overhead
compared to proofs constructed using the Iris/Rocq proof mode.

1 Introduction

We present Raven, a new language and SMT-based tool for deductive verification of
concurrent programs. Raven is designed as an intermediate verification language (IVL)
that can be used for building front-end verifiers for other programming languages.

Several existing SMT-based IVLs such as Why3 [13], Boogie [3], and Viper [37]
have been used successfully to build concurrent program verifiers. However, none of
these IVLs provide direct support for reasoning about concurrency. As a consequence,
front-end tool developers are left with building their own concurrency support from
scratch [6, 43, 49]. This requires an extra layer of encoding that can be a source of
subtle soundness bugs [44].

Raven aims to fill this gap by providing inbuilt support for concurrency that is based
on a solid theoretical foundation, yet builds on the lessons learned from existing IVL
developments. Raven’s design allows us to do the soundness reasoning for concurrency
once at the IVL level rather than having to do it anew for each verification frontend. This
argument extends to implementation bugs: eliminating redundancy in the verification
tool pipeline reduces sources of potential soundness bugs.

Raven’s meta-theory is based on the concurrent separation logic Iris [20, 22]. Iris is
parametric in the underlying programming language. It is also very expressive due to
its higher-order features that can be used to define new verification methodologies and
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prove them sound within the logic itself. Thus, the logic can be thought of as an IVL
in its own right. In fact, several efforts exist to build verification tools for real-world
programming languages on top of Iris, including C [32] and Rust [15].

So why is there a need for a new tool? The answer is twofold. First, Iris is complex.
This complexity is a key prerequisite to some of the logic’s most impressive success
stories [19]. But on the flip side, this complexity comes at the cost of a steep learning
curve. This is despite the fact that many of Iris’s advanced features are usually not
needed for more mundane program verification tasks. In fact, in such cases, they can
get in the way of a seamless user experience. Raven’s design therefore restricts Iris’s
features to a subset that is geared towards these common use cases. The goal of this
design is to make the logic more accessible and aid proof automation.

This brings us to the second point. The existing tooling effort in the Iris ecosystem
has centered on its Rocq mechanization and accompanying proof mode [26]. While the
proofs constructed with these tools provide strong foundational correctness guarantees,
they also tend to be much more laborious compared to those done using SMT-based
deductive verifiers. Recent efforts, notably the Diaframe project [34, 35] aim to provide
better automation for Iris within Rocq. Diaframe already achieves impressive results
and is able to almost fully automate linearizability proofs of small but intricate data
structures. However, using this tool effectively requires a deep understanding of not just
Iris, but also the intricacies of its low-level mechanization in Rocq. Moreover, Diaframe
does not help with the automation of theory reasoning.

Overview and Contributions. In §2 we introduce Raven’s core features. These in-
clude (i) a basic imperative programming language with concurrency primitives, (ii) a
higher-order module system that aids proof modularization and reuse, (iii) an Iris-based
specification language with invariants for thread-modular reasoning about shared state,
and (iv) user-definable ghost state based on Iris’s notion of resource algebras. In §3
we provide an overview of the proof automation support for these core features and
discuss aspects of the SMT encoding. §4 covers some of Raven’s advanced features
such as atomic contracts for modular reasoning about linearizability, support for iter-
ated separating conjunctions, and heuristics for dealing with quantifier alternations in
specifications. In §5 we discuss implementation details and our evaluation of Raven.
Finally, §6 discusses related work in more detail and §7 concludes.

We end here with a brief summary of the key findings of our evaluation. First, we
compare Raven against Diaframe on Diaframe’s verification benchmark suite of concur-
rent data structures and accompanying client programs. The takeaway is that Diaframe
generally requires fewer proof annotations for these benchmarks. However, Raven’s
verification times are 1-2 orders of magnitude faster, resulting in a more agile interac-
tive user experience. To assess the scalability and usability of the tools, we also reimple-
mented a more complex existing Iris linearizability proof in Raven. The original proof
consists of several thousand lines of Rocq code and was done without the help of Di-
aframe. Compared to the original proof, Raven achieves a reduction in proof overhead
by a factor of 12, and runs 8 times faster. We also used Diaframe to automate aspects of
the original Iris development but quickly ran into usability issues with the tool’s current
proof automation support. Finally, we also compare Raven with Viper, another SMT-
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based IVL, on a subset of sequential examples and find the two tools’ performance to
be comparable.

In summary, we believe that Raven provides a solid foundation for the development
of concurrent program verifiers and is a useful verification tool in its own right.

2 Overview of Core Functionality

We introduce Raven’s language and core functionality by using the verification of a
ticket lock implementation as an illustrative example.

Module System. Raven programs are organized as modules. The members of a module
include data type definitions, pure functions and values defined over these data types,
fields that introduce (shared) heap-allocated state, procedures that perform computa-
tions over this state, as well as additional members related to specification and verifica-
tion. The module system also supports nested and higher-order modules (or functors)
that take other modules as parameters. The types of functor parameters are specified by
interfaces. An interface is like a module but is allowed to have abstract members that
are declared but not yet defined.

Figure 1a shows the signature of the interface Lock that specifies the operations
supported by a lock instance l. The inbuilt type Ref of l represents references to heap
locations. Lock abstracts over a module R that implements the interface LockResource.
This interface declares the abstract predicate resource(r), which represents a shared
resource that can be protected by a lock. The value r of the representation (or rep) type
T is used to uniquely identify this resource. Each module and interface can have at most
one rep type member. A module is identified with its rep type when its name is used in
a context that expects a type expression. For instance, the occurrence of R on Line 15
implicitly expands to R.T.

Specification Language. Raven provides a rich specification language based on con-
current separation logic with (abstract) predicates, shared invariants, user-definable ghost
state, axioms, lemmas, etc. In our example, the axiom LockResource.exclusive(r) states
that resource(r) cannot be duplicated. In particular, this means that the predicate can
only be owned by one thread at a time. Note that in Raven the operator && is interpreted
as separating conjunction, which we denote by ˚ outside of code snippets. When a
module implements an interface, all such axioms must be turned into lemmas that are
supported by proofs. The tool simplifies this task by attempting to automatically com-
plete the proofs of all axioms that have been omitted in a module implementation by
discharging them directly to the SMT solver.

Thread modular reasoning is enabled via (shared) invariants like lock_inv(l,r) de-
clared on Line 13 of interface Lock. Invariants specify global data structure-level logical
invariants about shared resources such as the heap representation of the lock. They are
themselves duplicable resources that can be freely shared between threads. For this to
be sound, a thread can only access the underlying resources of an invariant for one
atomic step at a time after which the invariant must be reestablished.

The procedure create(r) initializes a new ticket lock instance l and binds the re-
source r to l via the invariant lock_inv(l,r). The invariant then governs the ownership
transfer of R.resource(r) between threads that share l. The actual transfer is realized via
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1 interface LockResource {

2 rep type T

3 // Resource protected by a lock

4 pred resource(r: T)

5 axiom exclusive(r: T)

6 requires resource(r) && resource(r)

7 ensures false

8 }

9

10 interface Lock {

11 module R: LockResource

12

13 inv lock_inv(l: Ref, r: R)

14

15 proc create(r: R) returns (l: Ref)

16 requires resource(r)

17 ensures lock_inv(l, r)

18

19 proc acquire(l: Ref, ghost r: R)

20 requires lock_inv(l, r)

21 ensures resource(r)

22

23 proc release(l: Ref, ghost r: R)

24 requires lock_inv(l, r) && resource(r)

25 ensures true

26 }

(a) Lock interface

27 module TicketLock[R: LockResource] : Lock {

28 field next: Int; field curr: Int

29

30 module DisjInts = Library.DisjSet[IntType]

31 module AuthDisjInts = Library.Auth[DisjInts]

32 ghost field tkts: AuthDisjInts

33

34 inv lock_inv(l: Ref, r: R) {

35 exists n: Int, c: Int, b: Bool ::

36 own(l.next, n) && n >= 0 && own(l.curr, c)

37 && own(l.tkts, ‚[0, n-1])

38 && (b ? own(l.tkts, ˝{c}) : resource(r))

39 }

40

41 proc acquire(l: Ref, ghost r: R)

42 requires lock_inv(l, r)

43 ensures resource(r)

44 {

45 ghost var lockAcq: Bool;

46 unfold lock_inv(l, r)[lockAcq := b];

47 val nxt := faa(l.next, 1);

48 fpu(l.tkts, ‚[0,nxt-1], ‚([0, nxt], {nxt}));

49 fold lock_inv(l, r)[b := lockAcq];

50 var crr := -1;

51 while (crr != nxt)

52 invariant lock_inv(l, r) &&

53 crr == nxt ? resource(r) : own(l.tkts, ˝{nxt})

54 {

55 unfold lock_inv(l, r)[lockAcq := b];

56 crr := l.curr;

57 fold lock_inv(l,r)[b := crr == nxt || lockAcq];

58 }

59 }

60 ...

61 }

(b) TicketLock module

Figure 1: Raven implementation of a ticket lock

the procedures acquire and release. For instance, the contract of acquire specifies that
if lock l satisfies loc_inv(l,r) upon entry to the procedure, then acquire will guarantee
access to resource(r) upon return. Because the invariant is duplicable, calls to acquire

and release do not actually consume it, even though the contracts do not explicitly spec-
ify that ownership of the invariant is returned back to the calling context. Note that the
parameter r is declared as ghost for these two procedures to indicate that it is only used
for verification.

Implementation Language. Raven’s underlying programming language is a first-order
concurrent imperative language supporting primitive atomic statements such as fetch-
and-add (faa), compare-and-set (cas), thread spawning, etc. Figure 1b shows a functor
that implements the interface Lock using the ticket lock algorithm. You may ignore the
code highlighted in gray for now in the implementation of acquire as it is only relevant
for the proof, which we discuss later.

A ticket lock instance l maintains a logical FIFO queue of threads that are waiting
to acquire the lock. The queue is represented by two counters stored in the heap fields
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next and curr. The counter next tracks the next available ticket number. When a thread
calls acquire(l) it reads and increments l.next in one atomic step using an faa operation
(Line 47). The read integer value nxt represents the ticket number that determines the
thread’s place in the queue.

The counter l.curr always trails l.next and tracks the ticket number of the thread
whose turn it is to acquire the lock and obtain ownership of resource(r). After a thread
has obtained its ticket number, it enters a loop that continuously reads l.curr until
this counter has caught up to nxt, indicating that the thread has acquired the lock. The
implementation of release (omitted in the figures) simply increments l.curr, signaling
to the next thread in the queue that its turn has come.

Resources and Resource Algebras. The invariant lock_inv(l, r) for the ticket lock is
defined on Line 34. In Raven, access to heap fields like next and curr is governed via
fractional permission resources [7]. These provide a multi-reader, single-writer access
control mechanism. In general, for a reference x, a heap field f:T, a value v of type T,
and a rational q P p0, 1s, the predicate own(x.f,v,q) indicates that x.f stores value v
and gives fractional access permission q to this location. A fraction q ą 0 provides read
access and q “ 1 additionally gives write access to the location. If q is omitted, then it
defaults to 1. The first three conjuncts of the invariant, thus, specify that the invariant
provides the permission to read and write the locations l.next and l.curr and that the
value n stored in l.next is positive.

The remaining two conjuncts of the invariant govern the ownership transfer of the
protected resource using an auxiliary ghost field. Ghost fields allow users to augment the
program state with logical ghost resources that track auxiliary information conducive to
verification. Ghost resources a are drawn from a resource algebra (of which fractional
permissions are one example). Formally, a resource algebra (RA) is a tuple:

xM, V : M Ñ B, ε P M, p¨q : MˆM Ñ M, pzq :MˆM Ñ M, pùq : MˆM Ñ By

that satisfies the axioms laid out in Fig. 2. In particular, xM, p¨qy is a commutative
monoid with unit ε. For a reference x and ghost field g and value a P M , the predicate
ownpx.g, aq states ownership of fragment a of the total ghost resource value stored at x.g.
The monoid operation p¨q : M ˆ M Ñ M provides meaning to separating conjunction
of such owned fragments:

ownpx.g, aq ˚ ownpx.g, bq %$ ownpx.g, a ¨ bq .

The predicate Vpaq states that the fragment a is valid. Only valid fragments can be
owned: ownpx.g, aq $ Vpaq. The relation a ù b indicates that an owned fragment
own(x.g, a) can be updated to own(x.g, b) in a frame-preserving way, i.e., without
invalidating ownership of other fragments own(x.g, c) of the same ghost location (FPU-
VALID). The subtraction function pzq can be understood as the right inverse of p¨q. Its
inclusion in the definition of RAs deviates from Iris’s notion of an RA. It is used for
automating the frame rule of separation logic using an SMT solver. We discuss this in
more detail in §3.

An example of a resource algebra that we use in the invariant of the ticket lock is
DisjSetrT s, which consists of subsets S P ℘pT q of some carrier set T with disjoint set
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Vpεq (ID-VALID)

@a, b, c :: pa ¨ bq ¨ c “ a ¨ pb ¨ cq (COMP-ASSOC)

@a, b :: a ¨ b “ b ¨ a (COMP-COMM)

@a :: a ¨ ε “ a (COMP-ID)

@a, b :: Vpa ¨ bq ùñ Vpaq ^ Vpbq (COMP-VALID)

@a :: a z ε “ a (FRAME-ID)

@a, b :: Vpa z bq ùñ pa z bq ¨ b “ a (COMP-FRAME-INV)

@a, b :: Vpa ¨ bq ùñ Vppa ¨ bq z bq (FRAME-COMP-VALID)

@a, b, c :: a ù b ^ Vpa ¨ cq ùñ Vpb ¨ cq (FPU-VALID)

Figure 2: Axioms defining a resource algebra

union as composition:

DisjSetrT s ::“ S | � Vpaq “ pa‰�q a ¨ b “ pVpaq ^ Vpbq ^ a X b “ Hq ? a Y b : �

ε “ H a z b “ pVpaq ^ Vpbq ^ b Ď aq ? a ´ b : � a ù b “ false .

Raven allows users to define their own proof-specific RAs using modules that im-
plement the predefined interface Library.ResourceAlgebra. This interface defines the
signature of the RA operations along with their axioms. When specifying a new RA,
it often suffices to define only the operations, and Raven automatically verifies that
the axioms are satisfied. To further simplify the definition of new RAs, the standard
library defines specialized variants cancellative RAs and lattice-based RAs, which sat-
isfy stronger properties.

As certain reasoning patterns often recur across proofs, Raven ships with several
predefined RAs as well as RA functors that construct new RAs from existing ones. In
fact, DisjSetrT s is predefined as Library.DisjSet[T].

The second common RA construction that we use in the invariant is that of the au-
thoritative RA [22]. This construction is useful whenever we want to track an updatable
ghost resource a in an invariant, but allow fragments of a to be owned by individual
threads. Formally, given an RA M , the authoritative RA AuthrM s is defined as:

AuthrM s ::“ ‚pa, bq | ˝a | � ε “ ˝M.ε

‚pa, bq ¨ ˝c “ ˝c ¨ ‚pa, bq “ ‚pa, b ¨ cq ˝a ¨ ˝b “ ˝pa ¨ bq _ ¨ _ “ � otherwise
Vp‚pa, bqq “ Vpaq ^ Vpbq ^ Vpa z bq Vp˝aq “ Vpaq Vp�q “ false

‚pa1, b1q ù ‚pa2, b2q “ Vp‚pa2, b2qq ^ p@c :: a1 “ b1 ¨ c ñ a2 “ b2 ¨ cq

where a, b, c P M . We omit the definition of pzq. Intuitively, ‚pa, bq denotes the author-
itative resource a with a fragment b of a that can still be handed out. On the other hand,
˝c denotes a fragment c of a that has already been handed out. We write just ‚a for
‚pa,M.εq. The authoritative RA is predefined as Library.Auth[M].

The invariant lock_inv(l,r) uses the ghost field tkts of type AuthrDisjSetrZss

(lines 30-32) to track the authoritative set of tickets [0,n-1] that have been in use so
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far (Line 37). When a thread attempts to acquire the lock and increments next to n+1,
the authoritative set of tickets is increased to include n. The fragment ˝{n} is given to
the thread as proof that it exclusively owns ticket n while it is waiting for its turn to
acquire the lock. Once the value c of curr has caught up to n, the thread can exchange
˝{n} for resource(r). This ownership transfer is realized via the conjunct on Line 38.
That is, the Boolean b indicates whether the lock is presently held by a thread. When
the thread releases the lock and increments curr, then Line 38 forces the thread to relin-
quish ownership of resource(r) back to the invariant because the thread does not also
own ˝{c+1}.

Raven as an IVL. Raven’s module system and user-definable ghost state provide the
flexibility to model a wide range of front-end language features, thus increasing its use-
fulness as an IVL. The module system facilitates rapid prototyping of various features,
while custom resource algebras can be used to encode language features that are not
directly supported by Raven. As a concrete example, user-definable ghost resources can
be used to encode deallocation obligations for reasoning about languages with manual
memory management [5]. Additionally, Raven includes explicit inhale and exhale com-
mands for direct manipulation of the proof state. Raven also supports atomic triples,
which are discussed in §4. Invariants and atomic triples can be used to define new
atomic primitives. When developing frontend verifiers, one only needs to reason about
the encoding of the concurrency primitives (e.g. that they satisfy their atomic specifica-
tions), but not the soundness of the entire underlying concurrent program logic.

3 Proof Automation

Proofs in Raven deploy a combination of user-provided ghost code annotations and
SMT-based proof automation. We demonstrate the mechanics using the proof of acquire
(Fig. 1b with ghost code highlighted in gray). We first discuss the role of the annotations
and then explain the SMT encoding that enables proof automation.

Proof Annotations. As discussed earlier, a thread executing acquire(l,r) first reads
and increments l.next using an faa. This statement requires read and write access to
l.next, which is granted by Line 36 of the invariant lock_inv(l, r). In order to retrieve
the relevant permission from the invariant, the proof author needs to manually unfold
the invariant, which is achieved by the unfold statement on Line 46. The statement
instructs the verifier to exchange the symbolic resource denoting ownership over the
invariant, with the resources contained in the body of the invariant. The statement also
assigns the value of the existentially quantified b in the body of the invariant to the ghost
variable lockAcq so that we can subsequently refer to it in the proof.

As the invariant is shared between all threads that have access to l, other threads
may interfere between each atomic access to l.next. The verifier therefore enforces that
the invariant is closed again between any two such atomic steps. This is achieved using
the fold statement as used on Line 49. The verifier is able to automatically compute
witnesses for the existentially quantified variables n and c in the invariant, as these can
be inferred from the heap state. However, the value of b needs to be supplied manually.
Here, we set it to lockAcq since the current thread has not yet acquired the lock. When
the verifier executes the fold statement, it first checks that the invariant indeed holds
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again for the computed and supplied existential witnesses. Then it exchanges the related
resources with the symbolic resource representing the closed invariant.

Most of the remaining ghost code is similarly related to unfolding and folding the
invariant around atomic accesses to the underlying resources. The one exception is
Line 48, which we discuss in more detail.

Suppose that after the value of l.next has been incremented to nxt+1 by the faa, we
immediately attempted to fold the invariant. Then the fold statement would fail because
the invariant is no longer satisfied: the ghost location l.tkts still holds ‚[0, nxt-1]

but needs to hold ‚[0, nxt]. To bring l.tkts back into sync with the value stored at
l.next, Line 48 performs a frame-preserving update (fpu) that replaces the fragment
‚[0, nxt-1] of l.tkts with ‚([0, nxt], {nxt}). The updated fragment can be split into
the fragments ‚[0, nxt] and ˝{nxt}. The first part is folded into the invariant on Line 49.
The second part stays with the thread and is the proof of ownership of ticket nxt that is
later traded for resource(r) with the invariant (Line 57 if crr == nxt).

SMT Encoding. Raven automatically checks the proof outline by generating a verifi-
cation condition that is discharged using an SMT solver.

Raven’s first-order logic encoding maintains for each field f a field heap f#heap,
which maps references ℓ to values of the resource algebra associated with f . The value
f#heap[ℓ] represents the total fragment of the location ℓ.f that is presently owned by
the thread. Heap fields and ghost fields are treated uniformly: the RA associated with a
heap field is that of fractional permissions over the values of the field’s underlying type.

Similarly, the encoding maintains invariant heaps and predicate heaps that track all
instances of invariants and predicates owned by the thread. The representation of these
heaps is similar to that of field heaps but relies on specialized RAs. In particular, for an
invariant invpxq, the invariant heap inv#heap maps a valuation v of the parameters x to
a Boolean flag that indicates whether invpvq is owned by the current thread.

Ghost statements like fold , unfold , and fpu are then translated to updates of the
various heaps to reflect the changes to the owned resources affected by the execution of
the statement. The encoding maintains the property that all heaps are valid with respect
to the underlying RA. Note that unfolding and folding an invariant does not change the
invariant heap since invariants are duplicable resources. Instead, a separate atomicity
analysis guarantees that the same invariant cannot be unfolded twice in a row without
folding it in between.

To build intuition for the reduction to SMT, we discuss the encoding of the frame-
preserving update on Line 48 in more detail:

1 /* Encoding of fpu(l.tkts, ‚[0, nxt-1], ‚([0, nxt], {nxt})); */

2 // 1. Check that fpu is valid

3 assert ‚[0, nxt-1] ù ‚([0, nxt], {nxt});

4 // 2. Exhale own(l.tkts, ‚[0, nxt-1])

5 tkts#heap := tkts#heap[l := (tkts#heap[l] z ‚[0, nxt-1])];

6 assert V(tkts#heap[l]);
7 // 3. Inhale own(l.tkts, ‚([0, nxt], {nxt}))

8 tkts#heap := tkts#heap[l := (tkts#heap[l] ¨ (‚[1, nxt], ˝{nxt}))];

Since the fpu updates l.tkts, only the field heap tkts#heap is affected. Line 3 first
checks that the update is indeed frame-preserving by utilizing the pùq relation of the
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underlying RA, AuthrDisjSetrZss. The actual update then proceeds in two steps, first
we exhale ownership of the fragment ‚[0, nxt-1] by removing it from the field heap at
l (Line 5). This step uses the function pzq to compute the residual fragment that is still
owned by the thread after the removal of ‚[0, nxt-1]. Because the fpu may be executed
in a state where the thread does not actually own ‚[0, nxt-1], Line 6 asserts that the
resulting heap remains valid. Together with the RA axiom COMP-FRAME-INV, this check
also ensures that the newly computed fragment tkts#heap[l] is indeed a residual of
‚[0, nxt-1] and the old tkts#heap[l]. That is, own(l.tkts,‚[0, nxt-1]) actually holds
before the update.

The second step composes the new fragment (‚[1, nxt], ˝{nxt}) of the fpu to the
computed residual (Line 8). The axiom FPU-VALID and the check on Line 3 guarantee
that the resulting field heap is again valid. The fpu involves an implicit application of
the frame rule in separation logic with the residual fragment acting as the frame.

The SMT reduction then utilizes a standard SSA encoding of this intermediate rep-
resentation of the program, using the theory of arrays to reason about the updates to
heap fields. To automate reasoning about RAs, the axioms from Fig. 2 are annotated
with appropriate E-matching patterns. If a module abstracts over a generic RA, then
during the verification of the module, the axioms are given directly to the SMT solver.
For concrete user-defined instantiations of RAs, the tool provides the SMT solver with
axioms that define the RA operations as specified by the user, as well as the RA axioms
(except for COMP-ASSOC). Providing the RA axioms for user-defined RAs is usually
redundant from a completeness perspective but we find that it improves solver perfor-
mance. The associativity axiom is omitted because of its cubic instantiation cost in the
number of RA terms. (That is, we rely on the SMT solver being able to infer associa-
tivity from the definitional axioms of the RA operations.)

With this encoding, Raven verifies the full implementation of the ticket lock in less
than one second. We emphasize that Fig. 1b comprises all annotations that the user must
provide for the proof of acquire. The annotation burden for release is similar.

4 Additional Features

In this section, we discuss several additional features of Raven that aim to further in-
crease its expressivity and usability.

Atomic Procedure Contracts. A common usage of concurrent program logics is to
prove linearizability of concurrent data structures. Logics like Iris provide the notion
of an atomic triple [43] to enable compositional reasoning about linearizability. While
atomic triples can be encoded using standard Hoare triples and invariants, Raven sup-
ports them directly via atomic procedure contracts.

An atomic triple takes the form
@

x. P
D

st
@

r.Q
D

. Intuitively, the atomic pre-
condition P acts like an invariant up to the linearization point of statement st . That is,
before the linearization point, st has access to the resources provided by P , but it needs
to ensure that P is maintained by each of its atomic steps. The logical variables x should
be thought of as representing the abstract state of the data structure that st operates on.
Importantly, between any two steps of st the values of x for which P holds may change
due to interferences by other threads. At its linearization point, st must transform P into
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1 pred is_lock(l: Ref; r: R, b: Bool) {
2 exists n: Int, c: Int ::
3 own(l.next, n) && n >= 0
4 && own(l.curr, c)
5 && (b ? own(l.tkts, ˝{c}) : resource(r))
6 && own(l.tkts, ‚[0, n-1])
7 }
8

9 proc wait_loop(l: Ref, x: Int,
10 implicit ghost r: R,
11 implicit ghost b: Bool
12 )
13 requires own(l.tkts, ˝{x})
14 atomic requires is_lock(l, r, b)
15 atomic ensures is_lock(l, r, true)
16 && b == false && resource(r)
17 {

18 ghost val phi := bindAU();

19 r, b := openAU(phi);

20 unfold is_lock(l);
21 val c: Int := l.curr;
22

23 if (x == c) {

24 fold is_lock(l, r, true);

25 commitAU(phi);
26 return;
27 } else {

28 fold is_lock(l, r, b);

29 abortAU(phi);
30

31 r, b := openAU(phi);
32 wait_loop(l, x);

33 commitAU(phi);
34 }
35 }

36 proc acquire(l: Ref,
37 implicit ghost r: R,
38 implicit ghost b: Bool)
39 atomic requires is_lock(l, r, b)
40 atomic ensures is_lock(l, r, true)
41 && b == false && resource(r)
42 {

43 ghost val phi := bindAU();
44

45 r, b := openAU(phi);

46 unfold is_lock(l);
47 val nxt: Int := l.next;

48 fold is_lock(l, r, b);

49 abortAU(phi);
50

51 r, b := openAU(phi);

52 unfold is_lock(l);
53 val res: Bool := cas(l.next, nxt, nxt+1);
54

55 if (res) {

56 fpu(l.tkts, ‚[0,nxt-1], ‚([0, nxt], {nxt}));

57 fold is_lock(l, r, b);

58 abortAU(phi);
59

60 r, b := openAU(phi);
61 wait_loop(l, nxt);

62 commitAU(phi);
63 } else {

64 fold is_lock(l, r, b);

65 abortAU(phi);

66 r, b := openAU(phi);
67 acquire(l);

68 commitAU(phi);
69 }
70 }

Figure 3: Atomic triple specification for TicketLock.acquire

Q in one atomic step. The variables r are the values that st returns upon termination.
After the linearization point, the transformed resources Q are then no longer accessible
by st . That is, the atomic triple captures the effect of st on the underlying data structure
at its linearization point in relationship to its return values.

We explain Raven’s support for atomic triples using the variant of the ticket lock
example shown in Fig. 3. An atomic triple for a procedure is specified by marking its
requires and ensures clauses as atomic. Such atomic pre/postconditions can be mixed
with regular pre/postconditions (as on Line 13), which retain their usual semantics. The
variables x of the atomic triple are specified as implicit ghost parameters in the atomic
contract. Note that unlike the invariant-based specifications used in Fig. 1a, the atomic
contract of acquire now allows us to directly refer to the state b of the lock. It specifies
that, at acquire’s linearization point, the state of the lock changes from b == false (un-
locked), to b == true (locked). To demonstrate the interplay between atomic contracts
of different procedures, we split the loop in the original implementation of acquire into
a separate recursive procedure wait_loop.
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Raven’s atomic contracts work as follows. Each call to a procedure with an atomic
contract has an associated ghost resource, the atomic update, which tracks the state of
the atomic contract throughout the procedure’s execution. These resources are uniquely
identified by atomic tokens. The statement bindAU can be used to obtain a handle on the
atomic token associated with the call to the current procedure (e.g. Line 43). Using this
handle, ghost code can then manipulate the state of the atomic update. For example,
if code needs access to a resource in the atomic precondition of the update, then this
is achieved with the statement openAU (e.g. Line 19). The statement returns the current
values of the logical variables x associated with the atomic update. After opening the
atomic update and taking an atomic step, it needs to be closed again. This can be done
in two ways. The statement abortAU (e.g. Line 29) checks that the atomic precondition
P still holds for the same values x that were obtained when opening the atomic update
and then relinquishes ownership of the associated resources back to the atomic update.
In contrast, the statement commitAU is used at the linearization point to check that Q
holds for the provided return values (e.g. Line 25). It then transfers ownership of Q
to the atomic update and marks it as committed. Raven checks at each return point
of an atomic procedure, that the associated atomic update has indeed been previously
committed for the actual return values.
Implicit Predicate Parameters. Predicates and invariants also support implicit param-
eters. These are separated from the input parameters with a semicolon in the predicate
definition, such as r:R and b:Bool in Line 1 of Fig. 3. This indicates that if a thread owns
is_lock for some l, then the values of r and b can be inferred from the symbolic state of
that predicate instance. For example, this allows us to omit these arguments when un-
folding is_lock(l), since Raven can automatically compute the appropriate witness for
the resulting existential quantifiers. Raven’s witness computation feature is discussed
in more detail below. The ghost resource associated with a predicate p(x; y) tracks
exactly one valuation of the implicit parameters y for each valuation of the parameters
x. To guarantee soundness, Raven checks that it is impossible to simultaneously have
ownership of the resources contained in p(x; y1) and p(x; y2) for any y1 ‰ y2.
Iterated Separating Conjunctions. Reasoning about unbounded memory regions in
separation logic, e.g. to express ownership over array segments, requires support for it-
erated separating conjunctions (ISCs). Raven supports automated reasoning about ISCs
using an SMT encoding that adapts the technique proposed in [36]. We extend this
technique by generalizing it to resources over arbitrary RAs and by providing heuristic
support for dealing with @D quantifier alternations.

For illustrative purposes, we present a simplified version of a predicate that we use
in the Raven implementation of a case study discussed in more detail in §5.2:

pred cssR(r: Ref) {

forall n: Ref :: n in nodeSet(r) ==>

exists b: Bool, cn: Set[K] ::

own(n.lock, b, 1.0) && (b ? true : nodePred(r, n, cn))

}

The predicate cssR(r: Ref; nodeSet: Set[Ref]) expresses ownership of the resource
nodePred(r, n, cn) associated with each node n in the set nodeSet(r), provided m’s lock

bit is false (i.e., the node is unlocked). Intuitively, the nodes constitute a data structure
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associated with the given root node r. The existentially quantified cn is a set of keys that
represents the logical state of node n.

Raven handles such assertions as follows. When an ISC is assumed to hold (e.g.,
if it occurs in a precondition), any nested existential quantifiers are skolemized. The
remaining universal quantifiers are translated to universally quantified first-order for-
mulas, which are sent to the SMT solver. Following [36], the supported ISCs must
adhere to certain restrictions so that the quantifiers can be automatically annotated with
appropriate triggers to ensure robust proof automation using E-matching.

When an ISC is asserted to hold, the outermost universal quantifier is skolemized
and the inner existential quantifier turns into a universal quantifier. Rather than passing
such quantifiers on to the SMT solver directly, Raven provides heuristic support for
instantiating them upfront by computing appropriate witness terms, say b_wtns(n) and
cn_wtns(n) in the example above.

Existential Witness Computation. The witness computation heuristic exploits the fact
that the values of existential quantifiers in separation logic formulas are often uniquely
determined by the underlying (ghost) heap state. In our example, the value of b is de-
termined by n’s lock location and the value of cn is determined by nodePred whose third
parameter is implicit. This allows Raven to compute the following constraints on the
witness terms, expressed in terms of the field and predicate heaps used for the SMT
encoding of the resources:

n in nodeSet ==> b_wtns(n) == lock#Heap(n)#0

n in nodeSet && !b ==> cn_wtns(n) == (node#PredHeap[ (r, n) ])

In this example, the witness computation and ISC encoding together enables automated
reasoning about the predicate cssR without requiring the proof author to manually in-
stantiate universal quantifiers or provide witness terms.

5 Implementation and Evaluation

Raven is implemented in about 16K lines of OCaml code. The tool operates on source
programs written in the Raven language. We additionally provide integration into Visual
Studio Code via a rudimentary language server written in TypeScript. The current test
and benchmark suite consists of over 9K lines of Raven code with the largest case study
(discussed in §5.2) in the order of 1K lines (including specifications and proofs). The
tool and benchmarks are made available with the artifact accompanying this paper [16].

After parsing and type checking, the input program is compiled into verification
conditions expressed in SMT-LIB format. These are then dispatched with Z3 [33], uti-
lizing the solver’s incremental solving capability.

Evaluation. We evaluate Raven’s effectiveness as a verification tool by comparing it
with existing automation efforts for Iris. We focus our comparison on Diaframe [34,35],
a proof search engine built for the Rocq mechanization of Iris that helps to automate
linearizability proofs for fine-grained concurrent data structures. While there exist a
number of other tools that automate proofs in concurrent separation logics, these tools
make different trade-offs in terms of generality vs. degree of automation compared to
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Raven. Moreover, none of these tools are based directly on Iris. We therefore focus on
Diaframe for our experimental comparison and discuss other tools in §6.

In our first experiment (§5.1), we reimplement Diaframe’s benchmark suite of data
structures in Raven and compare the performance of the two tools on these benchmarks.
While Diaframe is able to automatically construct foundational proofs of correctness
when it works, its approach to automation comes with certain tradeoffs, particularly
when dealing with proof-specific resource algebras, and when scaling to more complex
developments. In order to examine how the tools perform in such cases, our second
experiment (§5.2) reimplements the proof of one of the concurrent template algorithms
of [27] (which was originally done in Iris) and its instantiation to B+ trees (which was
originally done using the SMT-based verifier GRASShopper [42]).

To compare Raven’s performance with other SMT-based tools, we conduct an ex-
periment (§5.3) that compares Raven with Viper on examples that are supported by
both tools. Finally, we conduct an additional experiment (§5.4) where we inject bugs in
Raven programs to determine performance for failing programs.

5.1 Experiment 1: Comparison with Diaframe on Diaframe benchmarks

Diaframe implements a goal-directed proof search engine using ideas from linear logic
programming and biabduction. It relies on a large library of hints, as well as custom
user-provided hints to guide the proof search. Foundational tools like Rocq provide
stronger correctness guarantees than SMT-based tools as they rely on a much smaller
trusted computing base. However, they typically require a user to spell out proofs in
much more detail. Diaframe aims to automate a lot of this low-level proof burden while
still ensuring foundational correctness.

We reimplemented Diaframe’s benchmark suite of 23 examples in Raven3. It con-
sists of 19 concurrent data structures including different variants of locks, counters,
sets, queues, and stacks, as well as four clients for some of these data structures. We
additionally include the implementation of a fractional token resource algebra that is
used in several of the benchmark examples.

We aimed to stay as close as possible to Diaframe’s implementations and specifica-
tions. Some differences in the specifications arise due to Raven’s more restricted support
of higher-order features. For example, our lock implementations parameterize over the
locked resources using abstract predicates and higher-order modules (as in Fig. 1a).
In contrast, the Diaframe versions directly use higher-order quantification over Iris as-
sertions. This makes the Diaframe specifications slightly more general than the Raven
versions. So far we have not encountered situations where the more restrictive speci-
fication was a hindrance to verification of clients. However, one can easily construct
artificial examples that cannot be verified using the Raven specifications.

The results of our comparison are summarized in Table 1. We list the size of each
benchmark (measured in the number of program instructions and declarations in the
Raven implementation). In addition, for each tool we measure the number of proof-
related declarations “pf decl” (e.g., ghost fields, RA functor instantiations, Iris name

3 We merge Diaframe’s ‘lclist’ and ‘lclist-extra’ benchmarks, resulting in 23 examples instead
of 24 in the original paper.
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Raven Diaframe
benchmark size pf decl pf instr pf ovrhd runtime pf decl pf instr runtime
arc 24 18 50 2.83x 0.36 s 15 0 9.48 s
bag stack (aka Treiber stack) 20 6 32 1.90x 0.40 s 24 19 16.89 s
barrier 44 31 90 2.75x 3.90 s 35 6 379.49 s
bounded counter 13 4 7 0.84x 0.16 s 18 6 12.59 s
cas counter 12 11 12 1.91x 0.20 s 19 0 8.51 s
clh lock 25 11 13 0.96x 0.34 s 26 0 18.84 s
fork join 11 11 7 1.63x 0.19 s 19 0 7.45 s
inc dec 16 4 16 1.25x 0.18 s 22 0 22.64 s
lclist 114 25 46 0.62x 0.63 s 51 21 126.57 s
mcs lock 32 16 36 1.62x 1.24 s 31 0 50.75 s
msc queue 34 13 29 1.23x 0.34 s 16 0 88.83 s
peterson 29 11 40 1.75x 1.23 s 32 26 -
queue 36 14 32 1.27x 0.25 s 20 0 49.46 s
spin lock 10 6 8 1.40x 0.20 s 23 0 7.22 s
rwlock duolock 45 14 23 0.82x 0.45 s 22 0 16.43 s
rwlock lockless faa 19 7 25 1.68x 0.37 s 18 0 21.10 s
rwlock ticket bounded 30 22 39 2.03x 0.83 s 30 3 39.00 s
rwlock ticket unbounded 31 14 38 1.67x 0.50 s 30 0 17.50 s
ticket lock 16 17 12 1.81x 0.72 s 28 0 19.80 s
barrier client 35 50 87 3.91x 0.74 s 32 24 -
cas counter client 12 6 4 0.83x 0.20 s 10 0 5.68 s
fork join client 10 6 3 0.90x 0.18 s 9 0 3.76 s
ticket lock client 15 5 6 0.73x 0.21 s 11 0 5.61 s
tokens ra 0 54 46 - 0.34 s 131 290 18.05 s

Average 1.65x 0.54 s 26.96 s
Table 1: Comparison of Raven and Diaframe on Diaframe’s benchmark suite; runtimes
averaged over 10 runs. size = number of program instructions; pf decl = number of
proof-related declarations; pf instr = number of proof instructions; pf ovrhd = proof
overhead defined as (pf decl+pf instr)/size.

space declarations), proof-related instructions “pf instr” (e.g., ghost commands, proofs
and invocations of auxiliary lemmas, proof tactic invocations, Diaframe hints), the proof
overhead “pf ovrhd” defined as the ratio between “size” and “pf decl”+“pf instr”, and
the tool’s runtime for the verification. Runtimes are measured on an Apple M1 Pro (32
GB RAM, 10 cores) and are averaged over 10 runs. We are unable to report runtimes for
“peterson” and “barrier client” due to compilation issues on Diaframe’s master branch.

We find that Raven requires considerably fewer proof declarations than Diaframe.
This can be attributed to Raven’s restricted support of higher order features, which
reduces the amount of required boilerplate code. Proof overhead for Raven implemen-
tations varies between 0.62x to 3.91x, with a mean of 1.65x.

As an illustrative example, if we examine the ‘barrier client’ benchmark closely we
find that out of its 87 proof instructions, 46 instructions pertain to (un-)folding pred-
icates and 23 pertain to (un-)folding invariants, while the remaining 18 instructions
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relate to lemma calls, frame-preserving updates, etc. This is typical for the other bench-
marks as well. Certain heuristics can be applied automatically to infer some of these
instructions, however it may lead to slowdowns and inconsistent behaviour for the user.
The development of robust heuristics for further proof automation is a lucrative future
direction of research.

Owing to its considerable hints library, Diaframe is able to construct many of these
proofs in their entirety. However, the automation comes at the cost of flexibility. When
the user wants to use a resource algebra that is not supported by Diaframe out of the
box, they are required to supply such hints manually. This is reflected in the ‘tokens
ra’ benchmark, which contains the definition of the fractional tokens resource algebra
that is used in the proofs of several of the data structures including “barrier”, “rwlock
duolock”, “arc”, etc. While Raven’s implementation required 54 proof declarations and
46 proof instructions, Diaframe required 131 and 290, respectively.

These hints, broadly speaking, serve a similar purpose as Raven’s RA axioms for
the subtraction operator pzq. Raven provides SMT-based automation for proving that
these axioms are satisfied for a particular RA definition, while Diaframe requires users
to define these hints directly in Rocq/Iris with little automation.

Comparing runtimes, we find that Raven is typically between one to two orders of
magnitude faster. While Diaframe has to perform the much harder task of searching
through the space of proof tactics, Raven directly encodes separation logic reasoning to
first-order logic and dispatches it to Z3.

In our experience, Raven’s flexibility in adapting to user-defined resource algebras,
as well as significantly faster runtimes make a considerable difference during the pro-
cess of developing correctness proofs, by enabling rapid prototyping and iteration.

5.2 Experiment 2: The GIVEUP Template Case Study

The goal of our second experiment is to evaluate the performance of Raven on more
complex verification tasks. For this purpose, we chose to reimplement the proof of one
of the algorithms for concurrent search structures from [27] in Raven. Specifically, we
reimplemented the give-up algorithm.

The original proof consists of two parts. The first part is a proof of linearizability of
a template algorithm for a concurrent set data structure. It was mechanized using Iris’s
Rocq proof mode without the help of Diaframe. The template proof abstracts from the
memory representation of the data structure by assuming helper functions that perform
the node-local operations like inserting a key into a node. This way, the linearizability
proof can be instantiated for vastly different concrete concurrent set implementations.
The second part of the proof concerns the verification of the concrete helper function
implementations, which only involves sequential reasoning. This part of the proof was
originally done in the SMT-based verifier GRASShopper [42] for two concrete data
structures: B+ trees and hash tables. We focus on the B+ tree instantiation.

The case study is a compelling target for our experiment because it heavily exer-
cises Raven’s higher-order module system and support for ISCs. The proofs also use
complex proof-specific RAs (e.g., keysets [27] and flows [28,29]) to achieve the desired
parametricity in the low-level memory representation of the data structure. Finally, the
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Raven Iris GRASShopper
component size pf decl pf instr runtime pf decl pf instr runtime pf decl pf instr runtime
ccm 0 25 4 0.13s 107 484 2.13s 14 5 0.12s

flows-ra 0 37 22 0.75s 83 1804 23.90s 32 258 6.03s

keyset-ra 0 23 0 0.26s 27 661 24.55s - - -
give-up 38 57 120 7.60s 56 465 21.13s - - -
b-plus-tree 47 33 42 2.10s - - - 18 24 10.60s

array-utils 57 75 60 3.13s - - - 21 51 10.18s

Table 2: Comparison of the GIVEUP template implementation in Raven vs Iris +
GRASShopper; runtimes averaged over 10 runs. size = number of program instructions;
pf decl = number of proof-related declarations; pf instr = number of proof instructions.

fact that the original proof used both Iris/Rocq and an SMT-based tool makes for an
interesting comparison point.

Table 2 shows the comparison of proof effort and verification times for the old
and new proofs of the case study, aggregated according to the top-level components
of the implementation and proof. As can be observed, Raven significantly reduces the
proof effort and verification time compared with the Iris/Rocq mechanization. While the
components mechanized in Iris amounted to a total of 273 proof declarations and 3414
proof instructions, the same components in Raven added up to 142 proof declarations
and 146 proof instructions, while still being between 5x and 90x faster on each indi-
vidual component. For the sequential components, Raven’s performance is at par with
GRASShopper; Raven ended up with 170 proof declarations and 128 proof instructions
as opposed to GRASShopper’s 85 and 338 respectively. This is to be expected since
both tools depend on an SMT backend and provide similar levels of automation for rea-
soning about sequential code. Raven also provides faster runtimes than GRASShopper.
This can be attributed to the fact that GRASShopper deploys its own E-matching engine
as a preprocessing step to the SMT solver in order to provide completeness guarantees
for certain decidable SL fragments [40, 41].

Diaframe Comparison. For the purpose of comparing Raven with Diaframe on a com-
plex verification task, we attempted reimplementing the give-up proof using Diaframe.
In our (anecdotal) experience, Diaframe struggles with verification of recursive func-
tions, requiring manual user input around proof steps that involve inductive reasoning.
This resulted in us having to guess magic parameters such as the maximal number of
steps to attempt in the proof search so that the inductive hypothesis can be applied
correctly. Similar difficulties arise when Diaframe fails to apply user-provided hints au-
tomatically and the user needs to carefully guide the proof search.

To be able to use Diaframe to its fullest capacity, the user needs to have a deep
understanding of the Rocq formalization of Iris. Diaframe generates side conditions
from proof steps in the search strategy. The authors, who are familiar with Iris, report
instances where the origin or the proof of such side conditions was not clear.

The proof of give-up relies on complex resource algebras (flows and keysets) as
mentioned earlier. Diaframe provides no support for proving that flows and keysets form
a resource algebra. In addition, the proofs require elaborate custom hints to infer facts
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that follow from the algebraic structure of the resource algebras. The overall result is an
increased burden on the user.

In summary, we believe that at least for now, significant automation gains by us-
ing Diaframe do not materialize for large proof developments due to the above reasons.
The unpredictability of the proof search can lead to a brittle user experience, in partic-
ular during development when the program and its specification is still in flux. Finally,
Diaframe’s lack of sufficient support for custom resource algebras may lead to users
having to fall back on vanilla Iris. However, we do note that Diaframe can provide
impressive automation gains on smaller examples and is designed to support full Iris
rather than a restrictive fragment. Moreover, unlike Raven, it constructs proof objects
in Iris/Rocq that provide foundational correctness guarantees.

5.3 Experiment 3: Comparison between Raven and Viper

To determine how Raven compares with other SMT-based separation logic verifiers,
we conduct an experiment where we reimplement a subset of Viper’s example set4 in
Raven and compare the runtimes. We compare Raven with Viper’s verification-condition
generation backend Carbon, as well as its symbolic execution backend Silicon.

Our results are summarized in Table 3a. The column ‘size’ refers to the number
of program instructions in the Raven implementation. Examples marked with (*) are
faulty examples which yield verification failure on all three tools. We modified the
original proof of the ‘tree delete’ benchmark to avoid the use of magic wand. We also
prove only memory safety for this example since Raven does not support sequence
types. We translated the modified version of this benchmark back to Viper to obtain a
fair comparison.

We note that Raven is using similar techniques as Viper’s Carbon backend, but trans-
lates directly to SMT rather than going through Boogie. We believe that the difference
in runtimes in cases where Raven outperforms Viper are likely attributed at least in part
to the Java Virtual Machine (and Common Language Runtime) startup time. So the run-
times will likely be more closely matched in a practical scenario where Viper is used in
a language server mode.

5.4 Experiment 4: Comparison of successful vs failing Raven examples

We also inject bugs in a subset of our benchmarks to assess Raven’s performance on
failing examples and give a more well-rounded picture. Our results are summarized in
Table 3b. We find most failing runtimes to be comparable to the succeeding runtimes.

6 Related Work

Raven has been designed as an intermediate verification language and backend (IVL)
that aims to serve (deductive) verification tools targeting concurrent programs. Its basic
philosophy follows that of other IVLs like Why3 [13], Boogie [3], and Viper [37] in

4 http://viper.ethz.ch/examples/

http://viper.ethz.ch/examples/
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benchmark size Raven Viper (Carbon) Viper (Silicon)
adt* 3 0.1 s 2.1 s 3.4 s
array max 12 0.3 s 2.4 s 3.0 s
binary search 13 0.2 s 2.0 s 2.4 s
dutch flag 22 0.3 s 2.2 s 3.0 s
graph marking* 33 10.3 s 2.6 s 3.7 s
tree delete 23 0.5 s 4.5 s 3.6 s

(a) Comparison of Raven with Viper’s backends Silicon and Car-
bon on a subset of Viper’s examples.

benchmark valid buggy
adt 0.1 s 0.1 s
arc 0.4 s 0.3 s
barrier 7.5 s 12.6 s
graph marking 0.3 s 10.3 s
lclist 0.8 s 0.5 s
peterson 1.7 s 0.7 s
rwlock duolock 0.5 s 0.4 s

(b) Comparing Raven run-
times on valid vs. buggy
benchmarks.

Table 3: Comparison of Raven with Viper and on faulty/buggy benchmarks.

that it automates a Hoare-based program logic using SMT solvers. Unlike Raven, none
of the mentioned IVLs provide native support for reasoning about concurrency. Thus,
concurrency verifiers that build on these IVLs require an additional layer of encoding
and extra effort by the developers to ensure overall soundness.

Similar to Raven, Boogie is a language and verifier for imperative programs whose
states are first-order structures (in some background theory). Boogie’s underlying pro-
gram logic does not provide direct support for compositional reasoning about (heap)
resources or concurrency. However, there are several verification tools for concurrent
programs that build on Boogie. Two notable examples are CIVL [25] and Chalice [31].
(The latter has also been re-implemented on top of Viper.) CIVL implements a conser-
vative extension of Boogie for verifying concurrent programs using a notion of layered
refinement. Its design differs substantially from Raven’s in that CIVL uses classical first-
order logic (extended with linear maps [30]) rather than separation logic, and relational
structured programming rather than logically atomic specifications.

Viper [37] is an IVL for reasoning about mutable heap-allocated state. It is based
on implicit dynamic frames (IDF) [45], a cousin of separation logic. Viper provides two
verification backends based on symbolic execution and verification condition genera-
tion (via a translation to Boogie) [24]. Notable features include support for abstract
predicates, iterated separating conjunctions [36], and magic wands [8]. Several fron-
tends for Viper target concurrent programs, including Voila [49], a proof outline checker
for the concurrent separation logic TaDa [43], VerCors [6], which targets Java, C, and
OpenCL among others, as well as Prusti [2,4], a verifier for (concurrent) Rust programs.

Raven owes some debt to Viper’s conceptual design. In fact, the sequential subset
of Raven’s core language is compatible with Viper’s. However, there are also important
differences. (Ghost) resources in Viper are restricted to fractional permissions whereas
Raven supports user-definable resource algebras. In particular, non-cancellative RAs
supported by Raven but not Viper are often useful for verifying intricate concurrent
algorithms (e.g., they are used in the case study discussed in §5.2). Also, Viper has no
module system. At a more technical level, Raven’s SMT encoding of resource reasoning
can be thought of as generalizing the approach taken in Viper’s VC generation backend
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to arbitrary RAs. A key technical difference is that Raven adheres to separation logic
rather than IDF to maintain compatibility with Iris. This creates interesting trade-offs. In
separation logic, expression evaluation is not dependent on resources, which simplifies
some of the concurrency reasoning compared to IDF. On the other hand, SL relies
more heavily on existential quantifiers. We alleviate the problem of reasoning about
existential quantifiers in Raven with a preprocessing step that computes witness terms
from resources and implicit parameters of predicates. Recent efforts aim to put Viper
on a foundational footing by formalizing and mechanizing its meta-theory [9] and by
enabling formal validation of its SMT translation pipeline [39].

We note that VerCors, which builds on Viper may also be seen as an IVL for con-
current programming languages [1]. However, we consider Raven to be situated fur-
ther down in the tool pipeline. In fact, VerCors may benefit from Raven’s improved
support for user-definable ghost resources and its other inbuilt concurrency reasoning
features. For example, Raven’s concurrency primitives are expressive enough to encode
VerCors’s parallel blocks directly: Raven supports spawning a thread that executes a
call to a procedure p (which may contain the code of a parallel block). Thread spawn-
ing consumes the resources from p’s precondition. In addition, a shared state invariant
allows transferring resources from the spawned thread back to the current thread. The
examples ‘fork_join’ and ‘fork_join_client’ in our benchmark suite demonstrate this.

Steel Core [47] is an IDF-based resource logic embedded in dependent type the-
ory. Similar to Raven, it supports user-definable partially commutative monoids, dy-
namically allocated invariants, and ghost computations. However, presently it does not
support iterated separating conjunctions or atomic specifications. Steel Core provides
foundational guarantees via a shallow embedding into F˚ [46]. Proof automation is
enabled via the tactic engine Steel [14]. It relies on symbolic execution with a frame
inference engine based on AC matching [23] and uses an SMT solver for equality rea-
soning modulo theories. In contrast, Raven offloads the entire reasoning to the SMT
solver. By augmenting RAs with a subtraction function pzq, frames are automatically
computed using theory solvers or E-matching.

VeriFast [18] is a verifier for C and Java based on separation logic with fractional
permissions. It does not support user-definable RAs but can reason about fine-grained
concurrency using a form of higher-order ghost code [17]. Implicit parameters of pred-
icates in Raven are similar to VeriFast’s predicate output parameters. However, implicit
parameters are strictly more general than output parameters. In particular, output param-
eters require predicate definitions to be precise. Here, precise means that in any given
state, there exists a unique substate that satisfies the predicate for a fixed valuation of
the input parameters and this substate uniquely determines the values of the output
parameters. In contrast, Raven supports imprecise predicates with implicit parameters
like the is_lock in Fig. 3. For example, on Line 24, both is_lock(l, r, false) as well
as is_lock(l, r, true) hold. For this reason, the user needs to specify the value of b

to fold the predicate. However, importantly, both of these predicate instances cannot
hold simultaneously (because e.g. own(l.next, n) is not duplicable). This correctness
condition is enforced by Raven and guarantees the uniqueness of the implicit parameter
values, once one of the instances has been folded.
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Raven builds on the concurrent separation logic Iris [20, 22]. Iris is a higher-order
impredicative logic, which necessitates a step-indexed semantic model. This is reflected
in a more complex notion of RA (so-called cameras) and, in the form of the later modal-
ity in assertions. Moreover, shared invariants and judgements in Iris are annotated with
namespaces and masks to soundly deal with impredicative (nested) invariants. These
features add complexity when learning the logic, and considerable proof burden even
for simple examples. A Raven RA roughly corresponds to a discrete unital camera in
Iris. To facilitate proof automation and accessibility, we restrict Iris to its first-order
subset by disallowing higher-order quantification and impredicativity. The simplified
setting avoids the need for explicit reasoning about Iris’s step-indexed semantics. Also,
invariants in Raven impose restrictions on the structure of namespaces so that they are
not directly exposed to the user and mask annotations can be automatically inferred. To
compensate for the resulting loss of expressivity, Raven provides a higher-order module
system, which can be used, e.g., to quantify over abstract predicates (like resource in
Fig. 1a). Iris provides tooling support via integration with the Rocq proof assistant [26].
Recent work has extended the Rocq plugin with a tactics-based proof search engine,
called Diaframe [34, 35], which we discuss in more detail in §5.

Several earlier notable concurrent separation logics that informed the development
of Iris have been used as the foundation for tool development efforts. For instance,
CAP [11] has been implemented in Caper [12], the views framework [10] in Star-
ling [48], and TaDa [43] in Voila. Proofs conducted with these tools are either restricted
to using specific notions of resources or provide less automation than Raven.

7 Conclusions

We introduce Raven, an intermediate language and tool for deductive verification of
concurrent programs. Raven is based on the concurrent separation logic Iris, but care-
fully restricts its expressivity to enable proof automation via SMT solvers. Our exper-
imental comparison shows that Raven is significantly faster and provides a better user
experience for larger proof efforts compared to other existing proof automation tools
targeting Iris.

We also have a formalization of Raven’s program logic for a core fragment of its
programming language as well as a pencil and paper soundness proof of the verifica-
tion condition generator for this fragment. A Rocq mechanization that embeds Raven’s
program logic into an Iris instance is underway. However, this is outside the scope of
the present paper.

We plan to expand Raven’s ecosystem by integrating it into front-end verification
tools. Other future work includes the integration of prophecies [21] to reason about
future-dependent linearization points and exploring techniques for further improving
proof automation, e.g., by using ghost state morphisms [38] to automatically infer
frame-preserving updates.
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